JEE Main Conic Section Important Questions

Dipanjana Sengupta

Updated On: September 27, 2023 09:00 AM | JEE Main

In this article, candidates can find the JEE Main Conic Section Important Questions along with previous years' question papers PDF.
JEE Main Conic Section Important Questions

JEE Main Conic Section Important Questions - A Conic Section is a curve developed by a plane after the intersection of the surface of the cone. A Conic Section can be divided into four basic sections - Parabola, Hyperbola, Ellipse, and Circle. As JEE Main Conic Section is one of the most important sections in the Mathematics Paper, students are often inquisitive about the tentative questions that can be asked in the following year. Therefore, we have mentioned the important questions from previous years' question papers.

The National Testing Agency or NTA has released the JEE Main 2024 Exam Dates on the official website. JEE Main 2024 Exam date session 1 is January 24 to February 1, 2024, and JEE Main session 2 exam date is April 1 to 15, 2024. In this article, candidates can find the JEE Main Conic Section Important Questions.

LATEST - JEE Main 2024 Daily Practice Questions for 22 September 2023

JEE Main Conic Section Important Questions

1: The equation of 2p2 + 3t2 − 8p − 18t + 35 = k represents a ________.

Answer -

Given equation, 2p2 + 3t2 − 8p − 18t + 35 – k = 0

Compare with ap2 + bt2 + 2hpy + 2gp + 2ty + c = 0

We get,

a = 2, b = 3, h = 0, g = −4, f = −9, c = 35 − k

Δ = abc + 2fgh − af2 − bg2 − ch2 = 6 (35 − k) + 0 − 162 − 48 − 0

Δ = 210 − 6k − 210 = −6k

Δ = 0, if k = 0

So, that given equation is a point if k = 0.


2: The locus of the midpoint of the line segment joining the focus to a moving point on the parabola p2 = 4cx is another parabola with the directrix ___________.

Answer -

Let the midpoint be (u, k) and the moving point be (ct2, 2ct).

Let focus is (c, 0).

So h = [ct2 + c] /2, k = [2ct + 0] / 2

=> t = k/c

So 2h = c(k/c)2 + c

= (k2/c) + c

=> k2 = 2ch – c2

=> k2 = 2c(h – c/2)

Replace (u, k) by (x, p)

p2 = 2c(x – c/2)

Directrix is (x − c/2)  = -c/2

=> x = 0

So x = 0 is the directrix.


3: On the parabola a = b2, the point least distance from the straight line a = 2b − 4 is ___________.

Answer -

Given, parabola b = x2  …..(i)

Straight line a = 2b − 4      …..(ii)

From (i) and (ii),

b2 − 2b + 4 = 0

Let f (b) = b2 − 2b + 4,

f′(b) = 2b − 2.

For least distance, f′(b) =0

⇒ 2b − 2 = 0

b = 1

From a = b2, a = 1

So, the point least distant from the line is (1, 1).


4: The line a − 1 = 0 is the directrix of the parabola, b2 − ka + 8 = 0. Then, one of the values of k is ________.

Answer -

The parabola is b2 = 4 * [k / 4] (a − [8 / k]).

Putting b = B, a − (8/k) = A, the equation is B2 = 4 * [k/4] * A

The directrix  is A + (k/4) = 0,i.e. a − (8/k) + (k/4) = 0.

But a − 1 = 0 is the directrix.

So, [8 / k] − (k / 4) = 1

⇒ k = −8, 4


5:If the foci of the ellipse (x2 / 16 )+ (y2 / b2 )= 1 and the hyperbola (x2 / 144) − (y2 / 81) = 1 / 25 coincide, then the value of b2 is _______.

Answer -

Hyperbola is (x2 / 144) − (y2 / 81) = 1 / 25

a = √(144/25);  b = √(81/25)

e1 = √(1 + b2/a2)

= √(1 + 81/144)

= 15/12

= 5/4

Therefore, foci = (ae1, 0) = ([12 / 5] * [5 / 4], 0) = (3, 0)

Therefore, focus of ellipse = (4e, 0) i.e. (3, 0)

=> e = 3/4

use formula e2 = 1 – (b2/a2)

Hence b2 = 16 (1 − [9 / 16]) = 7


6: Find the equation of the axis of the given hyperbola a2/3 −  b2/2 = 1 which is equally inclined to the axes.

Answer -

a2/3 −  y2/2 = 1

Equation of tangent is equally inclined to the axis i.e., tan θ = 1 = m.

Equation of tangent b= ma + √(c2m2 – d2)

Given equation is [a2/3] − [b2/2] = 1 is an equation of hyperbola which is of the form [a2/c2] − [b2/d2] = 1.

Now, on comparing c2 = 3, d2 = 2

b = 1 * a + √(3-2)

b = a + 1


7: If 4a2 + pb2 = 45 and a2 − 4b2 = 5 cut orthogonally, then the value of p is ______.

Answer -

Slope of 1st curve (dy / da)I = −4a / pb

Slope of 2nd curve (dy / da)II= a / 4b

For orthogonal intersection (−4a / pb) (a / 4b) = −1

a2 = pb2

On solving equations of given curves a = 3, b = 1

p (1) = (3)2 = 9

p = 9


8: The center of the circle passing through the point (0, 1) and touching the curve b = a2 at (2, 4) is ____________.

Solution:

Tangent to the parabola b = a2 at (2, 4) is [1 / 2] (b + 4) = a * 2 or

4a − b − 4 = 0

It is also a tangent to the circle so that the center lies on the normal through (2, 4) whose equation is a + 4b = λ, where 2 + 16 = λ.

Therefore, a + 4b = 18 is the normal on which lies (h, k).

h + 4k = 18  ….. (i)

Again, the distance of center (h, k) from (2, 4) and (0, 1) on the circle are equal.

Hence, (h − 2)2 + (k − 4)2 = h2 + (k − 1)2

So, 4h + 6k = 19     …..(ii)

Solving (i) and (ii), we get the center = (−16 / 5, 53 / 10)


9: Let E be the ellipse a2 / 9 + b2 / 4 = 1 and C be the circle a2 + b2 = 9. Let P and Q be the points (1, 2) and (2, 1), respectively. Then

A) Q lies inside C but outside E

B) Q lies outside both C and E

C) P lies inside both C and E

D) P lies inside C but outside E

Answer -

The given ellipse is [a2 / 9] + [b2 / 4] = 1. The value of the expression [a2 / 9] + [b2 / 4] – 1 is positive for a = 1, b = 2 and negative for a = 2, b = 1. Therefore, P lies outside E and Q lies inside E. The value of the expression a2 + b2 – 9 is negative for both the points P and Q. Therefore, P and Q both lie inside C. Hence, P lies inside C but outside E.

Hence option d is the answer.


10: The equation of the director circle of the hyperbola [a2 / 16] − [b2 / 4] = 1 is given by ______.

Answer -

The equation of the director circle of the hyperbola is a2 + b2 = c2 − d2.  Here c2 = 16, d2 = 4

Therefore, a2 + b2 = 12 is the required director circle.


Question 11: If m1 and m2 are the slopes of the tangents to the hyperbola a2 / 25 − b2 / 16 = 1 which passes through the point (6, 2), then find the relation between the sum and product of the slopes.

Answer -

The line through (6, 2) is b − 2 = m (a − 6)

y = mx + 2 − 6m

Now from state of tangency, (2 − 6m)2 = 25m2 − 16

36m2 + 4 − 24m − 25m2 + 16 = 0

11m2 − 24m + 20 = 0

Obviously its roots are m1 and m2, therefore m1 + m2 = 24 / 11 and m1m2 = 20 / 11.


12: The eccentricity of the curve represented by the equation a2 + 2b2 − 2a + 3b + 2 = 0 is __________.

Answer -

Equation a2 + 2b2 − 2a + 3b + 2 = 0 can be written as (a − 1)2 / 2 + (b + 3 / 4)2 = 1 / 16

[(a − 1)2] / (1/8) + [(b + 3 / 4)2] / (1/16) = 1,  which is an ellipse with c2 = 1 / 8 and d2 = 1 / 16

e = √(1 – d2/c2)

e2 = 1 − 1 / 2

e = 1 / √2


13: The foci of the ellipse 25 (a + 1)2 + 9 (b + 2)2 = 225 are at ___________.

Answer -

[25(a + 1)2/225] + [9(b + 2)2/225] = 1

Here, c = √[225 / 25] = 15 / 5 = 3

d = √[225/9] = 15 / 3 = 5

Major axis of the ellipse lies along the y-axis.

d2 = c2(1 – e2)

e = √[1 − 9 / 25] = 4 / 5

Focus = (−1, −2 ± [15 / 3] * [4 / 5])

= (−1, −2 ± 4)

= (-1, 2); (-1, -6)


14: The locus of a variable point whose distance from (2, 0) is 2/3 times its distance from the line a = −9 / 2, is __________.

Solution:

Let point P be (a1, b1) and Q(2, 0).

Given line => a = -9/2

=> 2a + 9 = 0

Let PM be the distance from P to line 2a + 9 = 0.

So, PQ = (2/3)PM

= (2/3)(a1 + 9/2)

(a1 + 2)2 + b21 = 4/9 (a1 + 9 / 2)2

9 [a12 + b21+ 4a1 + 4] = 4(a12 + (81 / 4) + 9a1)

5a12 + 9b21 = 45

(a12 / 9) + (b21 / 5 ) = 1,

Locus of (a1, y1) is (a2/9) + (b2/5) = 1, which is the equation of an ellipse.


15: The equation of the ellipse whose latus rectum is 8 and whose eccentricity is 1 / √2, referred to the principal axes of coordinates, is __________.

Solution:

Equation of ellipse = (a2/c2) + (b2/d2) = 1

Latus rectum = 2d2/c = 8

=> d2 = 4c ..(i)

Given e = 1/√2

We know e2 = 1 – (d2/c2)

1/2 = 1 – 4/c

Solving we get c = 8.

So d2 = 4c = 32

So d2 = 64, c2 = 32

Hence, the required equation of the ellipse is (a2/64) + (b2/32) = 1.


JEE Main Mathematics Question Paper

JEE Main Previous Years Question Paper

Candidates can find the last year JEE Main 2023 Question Paper for both the sessions here.

Find JEE Main  previous year question papers for exam preparation here -

Source: Aakash BYJU's

Also check:

For more information and updates on JEE Main Conic Section Important Questions, Stay tuned with CollegeDekho.

Are you feeling lost and unsure about what career path to take after completing 12th standard?

Say goodbye to confusion and hello to a bright future!

news_cta

FAQs

Do engineers use conic sections?

Yes, engineers use conic sections. The smoothness of conic sections is a critical property for applications such as aerodynamics, where a smooth surface is required to provide laminar flow and control turbulence.
 

What is the formula for conic section in JEE mains?

The conics equation described by the second-degree equation can be written as ax2+2hxy+by2+2gx+2fy+c = 0. Here, ∆ = abc + 2fgh – af2 – bg2 – ch2. ∆ is the discriminant.
 

Is conic sections hard?

Conic Sections is an easy and scoring chapter. Candidates preparing for the JEE Main Conic Section solved questions are advised to practice and be thorough with the formulas as this section is entirely based on formula-based problems.
 

How important is conic sections in JEE?

Around 5 to 7 heavy weightage questions are asked on the Conic Section topic in the JEE Main Exam, every year. 
 

JEE Main Previous Year Question Paper

icon

2022 Physics Shift 1

icon

2022 Physics Shift 2

icon

2022 Chemistry Shift 1

icon

2022 Chemistry Shift 2

icon

2022 Mathematics Shift 1

icon

2022 Mathematics Shift 2

icon

2023 Chemistry Shift 1

icon

2023 Mathematics Shift 1

icon

2023 Physics Shift 2

icon

2023 Mathematics Shift 2

icon

2023 Chemistry Shift 2

icon

2023 Physics Shift 1

icon

2024 Chemistry Shift 1

icon

2024 Mathematics Shift 2

icon

2024 Physics Paper Morning Shift

icon

2024 Mathematics Morning Shift

icon

2024 Physics Shift 2

icon

2024 Chemistry Shift 2

/articles/jee-main-conic-section-important-questions/
View All Questions

Related Questions

Is direct admission available at Miranda House, University of Delhi?

-RIMAL JEETUpdated on July 23, 2025 05:59 PM
  • 1 Answer
Jayita Ekka, Content Team

Dear student,

Which course do you want to take admission in Miranda House, University of Delhi? Admission to most of the courses in Miranda House is via CUET UG scores. However there might be some courses, where direct admission is accepted. Since you have not mentioned the course for which you seek admission, we advise that you call the college directly and inquire. 

READ MORE...

What time is Phase 1 going to release?

-keerthana reddyUpdated on July 23, 2025 05:51 PM
  • 1 Answer
Prateek Lakhera, Content Team

Dear student,

To help you assist better, we request you share details about the counselling or exam you are enquiring about. While several top exam counselling sessions are being commenced currently, such as OJEE 2025 counselling, TS ECET 2025 counselling, but for most exams, the Phase 1 counselling has already been completed, and subsequent round counselling is underway.

We wish this was helpful to you. In case of further queries, you can write to hello@collegedekho.com or call our toll free number 18005729877, or simply fill out our Common Application Form on the website.

READ MORE...

Mera college konsa hai kese pata lagega?

-dhara singh banjaraUpdated on July 23, 2025 05:50 PM
  • 1 Answer
Prateek Lakhera, Content Team

Dear student,

Hum aapse request karte hain ki aap jis exam ya counselling mein appear hue hain, uske details share karein. Abhi kaafi counselling sessions chal rahe hain jaise JEECUP 2025 counselling, OJEE 2025 counselling, aur TS EAMCET 2025 counselling. Usually, exam authorities choice filling ke basis par seat allotment result release karte hain, jisme yeh bataya jata hai ki aapko kaunsi college aur stream mili hai. Aap yeh details specific counselling portal par login karke dekh sakte hain. Iske liye aapko apne exam ke credentials, jaise application/registration number, password ya date of birth, ke through login karna …

READ MORE...

Do you have a question? Ask us.

  • Typical response between 24-48 hours

  • Get personalized response

  • Free of Cost

  • Access to community

Recent Articles

Recent News

Subscribe to CollegeDekho News

By proceeding ahead you expressly agree to the CollegeDekho terms of use and privacy policy

Top 10 Engineering Colleges in India

View All