JEE Main Trigonometry Important Questions

Dipanjana Sengupta

Updated On: November 17, 2025 12:19 PM

Candidates looking for the JEE Main Trigonometry Important Questions can find it here along with the solution and formulas.
 
logo
JEE Main Trigonometry Important Questions

JEE Main Trigonometry Important Questions - Getting ready to give the JEE Mains 2026? Want to learn how to successfully clear the Trigonometry section given in the exam? We have got you covered. You can ace the JEE Main 2026 by practicing and solving the trigonometry section of the JEE Mains Previous Year Question Papers.  While attempting the trigonometry part of the question paper, one needs to have a solid understanding of the principles of trigonometry and efficient problem-solving skills. Trigonometry involves the study of calculus, linear algebra, and statistics.

Also Read: JEE Main 2026 Admit Card

JEE Main Trigonometry Important Questions

Solving the JEE Main Trigonometry Important Questions is not an easy task. Given below are some important questions along with their step-by-step solution for students to practice and ace their JEE Mains. These questions will also help you in managing your time when taking the JEE Mains 2026 Exam.

Question 1: The general solution of sin x − 3 sin2x + sin3x = cos x − 3 cos2x + cos3x is _________.

Solution:

sinx − 3 sin2x + sin3x = cosx − 3 cos2x + cos3x

⇒ 2 sin2x cosx − 3 sin2x − 2 cos2x cosx + 3 cos2x = 0

⇒ sin2x (2cosx − 3) − cos2x (2 cosx − 3) = 0

⇒ (sin2x − cos2x) (2 cosx − 3) = 0

⇒ sin2x = cos2x

⇒ tan 2x = 1

2x = nπ + (π / 4 )

x = nπ / 2 + π / 8

Question 2 : If tan (cot x) = cot (tan x), then sin 2x = ___________.

Solution:

tan (cot x) = cot (tan x) ⇒ tan (cot x) = tan (π / 2 − tan x)

cot x = nπ + π / 2 − tanx

⇒ cot x + tan x = nπ + π / 2

1/sin x cos x = nπ + π / 2

1/sin 2x = nπ/2  + π / 4

⇒ sin2x = 2 / [nπ + {π / 2}]

= 4 / {(2n + 1) π}

Question 3 : If tan3θ−1tan3θ+1=3√, then the general value of θ is

Solution :

tan3θ−1 / tan3θ+1=3√ Þ tan3θ−tan(π/4) / 1+tan3θ.tan(π/4)

= √3Þ tan(3θ−π4)=tanπ3 Þ 3θ−(π/4)

= nπ+(π/3) Þ 3 θ=π+7π12Þ θ

= nπ3+7π36.

Question 4: The equation 3cosx+4sinx=6

Solution: 3cosx+4sinx=6 Þ

35 cos x+45 sin x=65 Þ  cos(x−θ)=65,

[where θ=cos−1(3/5)]

So, that equation has no solution.

Question 5: If the solution for θ of cospθ + cosqθ = 0, p > 0, q > 0 are in A.P., then numerically the smallest common difference of A.P. is ___________.

Solution:

Given cospθ = −cosqθ = cos (π + qθ)

pθ = 2nπ ± (π + qθ), n ∈ I

θ = [(2n + 1)π] / [p − q] or [(2n − 1)π] / [p + q], n ∈ I

Both the solutions form an A.P. θ = [(2n + 1)π] / [p − q] gives us an A.P. with common difference 2π / [p − q] and θ = [(2n − 1)π] / [p + q] gives us an A.P. with common difference = 2π / [p + q].

Certainly, {2π / [p + q]} < {∣2π / [p − q]∣}.

Question 6: In a triangle, the length of the two larger sides are 10 cm and 9 cm, respectively. If the angles of the triangle are in arithmetic progression, then the length of the third side in cm is _________.

Solution:

We know that in a triangle the larger the side, the larger the angle.

Since angles ∠A, ∠B, and ∠C are in AP.

Hence, ∠B = 60o cosB = [a2 + c2 −b2] / [2ac]

⇒ 1 / 2 = [100 + a2 − 81] / [20a]

⇒ a2 + 19 = 10a

⇒ a2 − 10a + 19 = 0

a = 10 ± (√[100 − 76] / [2])

⇒ a = 5 ± √6

Question 7: In triangle ABC, if ∠A = 45∘, ∠B = 75∘, then a + c√2 = __________.

Solution:

∠C = 180o − 45o − 75o = 60o

a/sin A = b/sin b = c/sin C

a/sin 45 = b/sin 75 = c/sin 60

=> √2a = 2√2b/(√3+1) = 2c/√3

=> a = 2b/(√3+1)

c = √6b/(√3+1)

a+√2c = [2b/(√3+1)] + [√12b/(√3+1)]

Solving, we get

= 2b

Question 8 : If sin2θ=cosθ,0<θ<π, then the possible values of θ are

A) 90,60,30

B) 90,150,60

C) 90,45,150

D) 90,30,150

Solution : sin2θ=cosθ⇒cosθ=cos(π/2−2θ) ⇒ θ

= 2nπ±(π/2−2θ)⇒θ±2θ=2nπ±π/2 i.e.

3 θ=2nπ+π/2⇒θ = 13(2nπ+π2) and −θ=2nπ−π/2⇒θ=−(2nπ−π/2)

Hence values of θ between 0 and π are π/6, π/2, 5π/6 i.e., 30,90,150°

Question 9. Tan [(π / 4) + (1 / 2) * cos−1 (a / b)] + tan [(π / 4) − (1 / 2) cos−1 .(a / b)] = _________.

Solution:

tan [(π / 4) + (1 / 2) * cos−1 (a / b)] + tan [(π / 4) − (1 / 2) cos−1 .(a / b)]

Let (1 / 2) * cos−1 (a / b) = θ

⇒ cos 2θ = a / b

Thus, tan [{π / 4} + θ] + tan [{π / 4} − θ] = [(1 + tanθ) / (1 − tanθ)]+ ([1 − tanθ] / [1 + tanθ])

= [(1 + tanθ)2 + (1 − tanθ)2] / [(1 − tan2θ)]

= [1 + tan2θ + 2tanθ + 1 + tan2θ − 2tanθ] / [(1 – tan2θ)]

= 2 (1 + tan2θ) / [(1 – tan2θ)]

= 2 sec2θ cos2θ/(cos2θ – sin2θ)

= 2 /cos2θ

= 2 / [a / b]

= 2b / a

Question 10 : sec2 (tan−1 2) + cosec2 (cot−1 3) = _________.

Solution:

Let (tan−1 2) = α

⇒ tan α = 2 and cot−1 3 = β

⇒ cot β = 3

sec2 (tan−1 2) + cosec2 (cot−1 3)

= sec2 α + cosec2β

= 1 + tan2α + 1 + cot2β

= 2 + (2)2 + (3)2

= 15

Trigonometric Ratios

In trigonometry, there are six basic ratios that help in building a relationship between the ratios of sides of a right triangle with the angle. Given below are the six ratios that one needs to know :

  • sin θ = Perpendicular / Hypotenuse
  • cos θ = Base / Hypotenuse
  • tan θ = Perpendicular / Base
  • cot θ = 1/tan θ = Base / Perpendicular
  • sec θ = 1/cos θ = Hypotenuse / Base
  • cosec θ = 1/sinθ = Hypotenuse / Perpendicular

Also, check

JEE Main 2026 Mathematics subject-wise weightage
JEE Main 2026 Chemistry subject-wise weightage
JEE Main 2026 Physics subject-wise weightage

Important Trigonometric Formulas

Add CollegeDekho as a Trusted Source

google
  1. Trigonometry Ratio Formulas
  • Sinθ = Opposite Side / Hypotenuse
  • Cosθ = Adjacent Side / Hypotenuse
  • Tanθ = Opposite Side / Adjacent Side
  • Cotθ = 1/tanθ = Adjacent Side / Opposite Side
  • Secθ = 1/cosθ = Hypotenuse / Adjacent Side
  • Cosecθ = 1/sinθ = Hypotenuse / Opposite Side
  1. Trigonometry Formulas ( Pythagorean Identities )
  • sin²θ + cos²θ = 1
  • tan2θ + 1 = sec2θ
  • cot2θ + 1 = cosec2θ
  1. Sine & Cosine Law
  • a/sinA = b/sinB = c/sinC
  • c2 = a2 + b2 – 2ab cos C
  • a2 = b2 + c2 – 2bc cos A
  • b2 = a2 + c2 – 2ac cos B

About Trigonometry

One of the most important branches in mathematics, Trigonometry, is the study of the relation between the ratios of the sides of a right-angled triangle and their angles. The trigonometric ratios used to examine this connection are sine, cosine, tangent, cotangent, secant, and cosecant. The term trigonometry is a 16th-century Latin derivation of the Greek mathematician Hipparchus' notion. The word trigonometry is formed by combining the words 'Trigonon', which means triangle and 'Metron', which means measure.
Also Check - JEE Main Exam Pattern 2026

JEE Main Mathematics Question Paper

Click Here Click Here
Click Here Click Here
Click Here Click Here

Also check:

JEE Main Marks vs Percentile JEE Main 2026 Marks vs Rank
JEE Main: Know all about NAT Questions What is the difference between JEE Main & JEE Advanced?
JEE Main Preparation for Guaranteed Success What is a Good Score and Rank in JEE Main 2026?
JEE Main study plan and timetable for 60 days JEE Main 2026 Mathematics subject-wise weightage
How to prepare Maths for JEE Main 2026? JEE Main Mathematics Important Topics

JEE Main Exam Materials

You can click on the link below to access various exam-related materials pertaining to the JEE Main exam -

JEE Main 2026 Preparation Tips JEE Main Previous Year Question Papers

JEE Main Coaching Institutes

Best Books for JEE Main 2026

JEE Main 60-Day Study Plan and Time -Table

JEE Main Syllabus 2026

JEE Main Mathematics Important Topics

JEE Main Chemistry Important Topics

JEE Main Physics Important Topics

JEE Main Free Practice Papers with Answer Key

JEE Main Predicted Question Paper

JEE Main Exam Analysis, Question Paper Analysis

For more information and updates on JEE Main Mathematics Trigonometry Section, Stay Tuned with Collegedekho.

Are you feeling lost and unsure about what career path to take after completing 12th standard?

Say goodbye to confusion and hello to a bright future!

news_cta

FAQs

What are the 4 types of trigonometry?

There are four types of trigonometry used today, which include core, plane, spherical, and analytic. 

Who is the father of trigonometry?

The father of trigonometry is Hipparchus. In the 2nd century BC, Greek mathematician Hipparchus made the finding of trigonometry. In addition to solving different spherical trigonometry issues, he begot the first trigonometric table.

Is trigonometry important for IIT?

Yes, Trigonometry is an important topic in JEE Main as well as JEE Advanced.

What are the important questions in trigonometry?

Some of the important JEE Main Trigonometry questions are listed below.

  • If tanA=n tanB and sin A =m sin B, prove that n2 - 1.
  • If x sin3|+ y cos3|=sin|cos| and xsin|=ycos|, prove x2+y2=1.
  • Find the value of (sin°45- cos°45)
  • If tan|+sin|=m and tan|- sin|=n, show that (m2-n2)=4√mn.

/articles/jee-main-trigonometry-important-questions/
View All Questions

Related Questions

When start new batch in quantum University???

-Ananya kumariUpdated on December 15, 2025 11:19 AM
  • 6 Answers
prakash bhardwaj, Student / Alumni

The new batch is started from August 2026 onwards in Quantum University.The registration process is Already started for 2026 batch you can apply for registration process online or offline.Registration process is important for admission process and Qcare scholraship exam.

READ MORE...

how the MBA placements for year 2022

-saurabh jainUpdated on December 15, 2025 12:45 PM
  • 24 Answers
vridhi, Student / Alumni

From 2022 to 2025, MBA placements at Lovely Professional University (LPU) have remained consistently strong, drawing leading recruiters such as Amazon, Deloitte, KPMG, HDFC Bank, and EY. Students have secured attractive salary packages, supported by LPU’s comprehensive placement assistance. The university provides dedicated training sessions, skill development workshops, and internship opportunities, ensuring graduates are well-prepared to excel in diverse managerial and leadership roles.

READ MORE...

Is LPUNEST compulsory for B.Tech? Can I get direct admission?

-AshwiniUpdated on December 15, 2025 11:30 AM
  • 43 Answers
Vidushi Sharma, Student / Alumni

LPUNEST is not compulsory for admission to the B.Tech program, as applicants may also apply through national-level exams like JEE (Main). However, taking LPUNEST is strongly recommended since it opens the door to scholarships and improves the likelihood of getting your desired branch. Although direct admission is available, LPUNEST clearly offers an additional advantage.

READ MORE...

Do you have a question? Ask us.

  • Typical response between 24-48 hours

  • Get personalized response

  • Free of Cost

  • Access to community

Recent Articles

Recent News

Subscribe to CollegeDekho News

By proceeding ahead you expressly agree to the CollegeDekho terms of use and privacy policy

Top 10 Engineering Colleges in India

View All