For \alpha , \beta , \gamma , \delta \in \mathbb{N}, if \int \left(\right. \left(\left(\right. \frac{x}{e} \left.\right)\right)^{2 x} + \left(\left(\right. \frac{e}{x} \left.\right)\right)^{2 x} \left.\right) log_{e} x d x = \frac{1}{\alpha} \left(\left(\right. \frac{x}{e} \left.\right)\right)^{\beta x} - \frac{1}{\gamma} \left(\left(\right. \frac{e}{x} \left.\right)\right)^{\delta x} + C, where e = \sum_{n = 0}^{\infty} \frac{1}{n !} and C is constant of integration, then \alpha + 2 \beta + 3 \gamma - 4 \delta is equal to :